

EXPLOSION PROOF & SEVERE DUTY HVAC EQUIPMENT CONSIDERATIONS

INTRODUCTION

Agenda Company Info Applications

AGENDA

Company Overview

People

Process

Industry Applications

Challenges

Hazardous Applications

Solutions

Summary

Q&A

PEOPLE

Our Team provides 300 years of diverse HVAC experience to your company. LEAN Six Sigma Capability 1 Master Black Belt 3 Green Belt

PROCESS

Focus on process improvement utilizing Lean Six Sigma tools

Growth of our production capabilities to support your business

COMPANY OVERVIEW

Founded 1974 in Tulsa, OK

Leader in customizable HVAC systems engineered for industrial applications

Centralized location allows for easy shipping across the U.S. and around the world

INDUSTRY APPLICATION

Oil & Gas / Petrochemical

Water & Wastewater Treatment

Power Generation

Mining

Pulp & Paper Mills

Energy Storage and UPS

Grain Processing and Storage

Steel Manufacturing

APPLICATION CHALLENGES

Common problems that are difficult to overcome with standard HVAC equipment

CHALLENGES

Corrosion

Extreme Ambient Temperatures

High Internal Sensible Heat Loads

Air Contaminants

Remote Locations & Critical Applications

Limited Space for Installation

Hazardous Atmospheres

EXTREME AMBIENT TEMPERATURES

Very hot conditions: As high as 131°F (55°C)

Very cold conditions: As low as -70°F (-57°C)

HIGH INTERNAL SENSIBLE HEAT LOADS

Sensible vs. Latent heat

Cooling equipment rather than people

AHRI standard:

 95° F ambient, 80° F return air @ 50% relative humidity

Typical electronics shelter:

Variable ambient, 75–95°F return air @ 35% relative humidity

AIR CONTAMINANTS

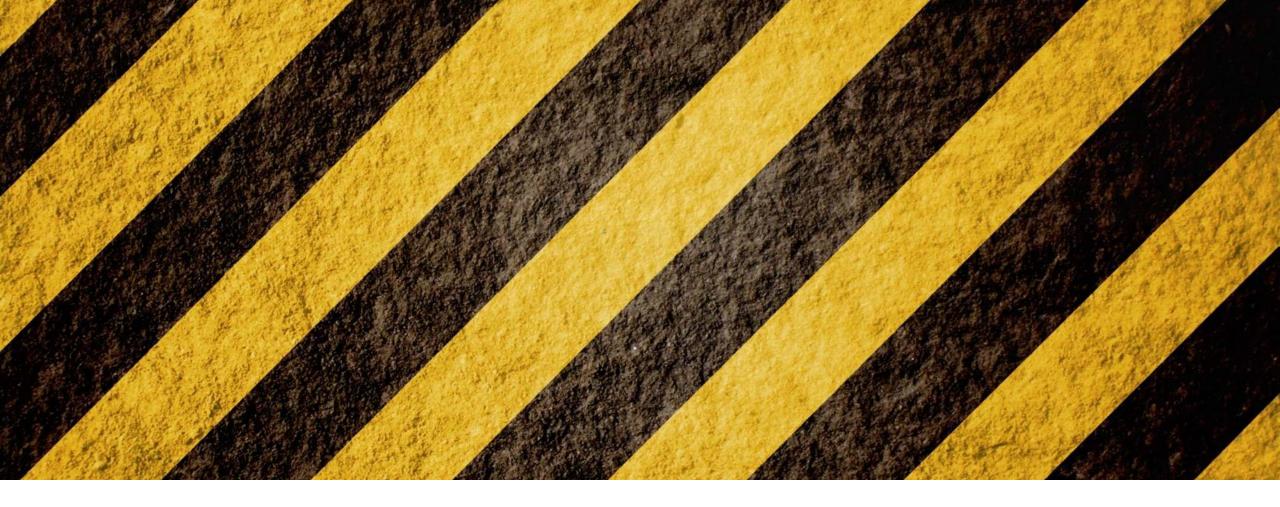
Particulate: Dust, pollen, bugs, fibers

Chemical: Corrosive, toxic, combustible

REMOTE LOCATIONS & CRITICAL APPLICATIONS

Unit Inaccessibility
Unreliable systems
Routine maintenance

Integration with Building Automation Systems
Notification of unit or component failure



LIMITED SPACE FOR INSTALLATION

System Footprint

Wall Space is Always at a Premium

As defined by NEC, NFPA, UL, CSA, ATEX, IEC, IECEX, and other initialisms

NEDA®

FUE

What does explosion proof mean?

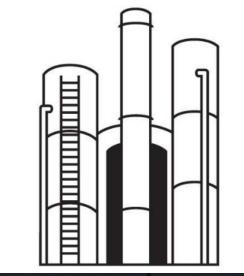
Who defines it?

IEC

CLAS

LAMMABLE GAS

Chemical Plants Refineries Aerospace Sites Bulk Loading Stations Mines Munitions Storage Areas Offshore Platforms Nuclear Facilities Power Gen Facilities



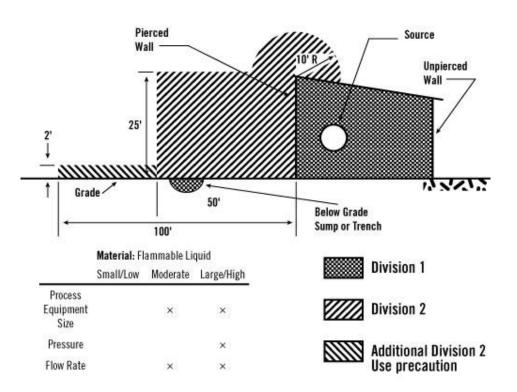
CLAS

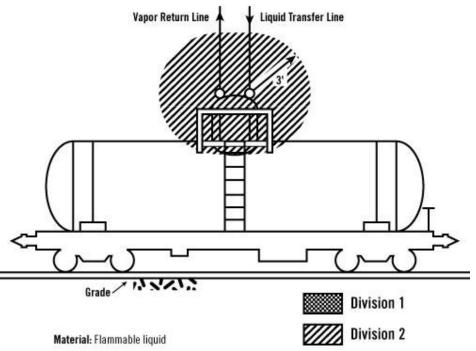
Land-Based Drilling Rigs Mines Grain Storage Processing Coal Handling/Storage Metal Grinding Pharmaceutical Mfg Plants Cosmetics Mfg Plants CAUTION FLAMMABLE FIBERS OR FLYINGS

CLASS

Textile Mills Cotton Mills Wool Processing Facilities Wood Processing Facilities

Division


Division


2

NFPA 497	Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas
NFPA	Standard for Fire Protection in Wastewater Treatment
820	and Collection Facilities
NFPA	Standard for Prevention of Fires in Agricultural Food
61	Processing
NFPA	Prevention of Fires in Electric Generating Plants and High
850	Voltage Direct Converter Stations
NFPA 664	Standard for Fire Protection in Wood Processing and Wood Working Facilities

SOME ADDITIONA L NFPA CODES & STANDARDS

How can you put electronic equipment in a hazardous location?
All equipment rated for use hazardous location (XP rated or intrinsically safe)
Utilize the techniques in NFPA 496 to purge and pressurize the building

PURGE & PRESSURIZATION

What is purging?

Force 60 fpm through any opening used for egress

This does not include machine loading doors or transoms that are locked shut during normal operation of the building

What is pressurization?
Maintain 0.1" w.c. (25 Pa) positive pressure leaving the enclosure

PURGE & PRESSURIZATI

What is required to specify the purge and

Type of Purging Building Volume

Hazardous Classification

ALL-IN-ONE SOLUTION

Complete environmental control system with industrial-grade features standard

ALL-IN-ONE SOLUTION

Completely self-contained packaged environmental control systems engineered to provide standard customized solutions to explosion proof, severe-duty and industrial applications

CORROSION RESISTANCI

Utilize 316 stainless steel throughout cabinet Corrosion resistant coil coatings Fully coated condenser section

EXTREME AMBIENT TEMPERATURES

Solutions for Hot Environments

Upsized coils

Alternative refrigerants, such as R-134A

Solutions for Cold Environments

- \Box Low Ambient Controls (-40°F/C)
 - Ultra* Low Ambient Controls require additional special equipment for mechanical cooling down to approximately -70°F)

HIGH SENSIBLE HEAT CAPACITY

Proper unit capacity sizing

Reverse air flow configuration

Proper duct design

AIR FILTRATION

Return Air

Standard foam/aluminum mesh washable filter
 Optional 2-inch MERV-8 filters

Outside Air

Standard foam/aluminum mesh washable filter
Optional 2-inch MERV-8 filters
Optional additional filtration up to MERV-18

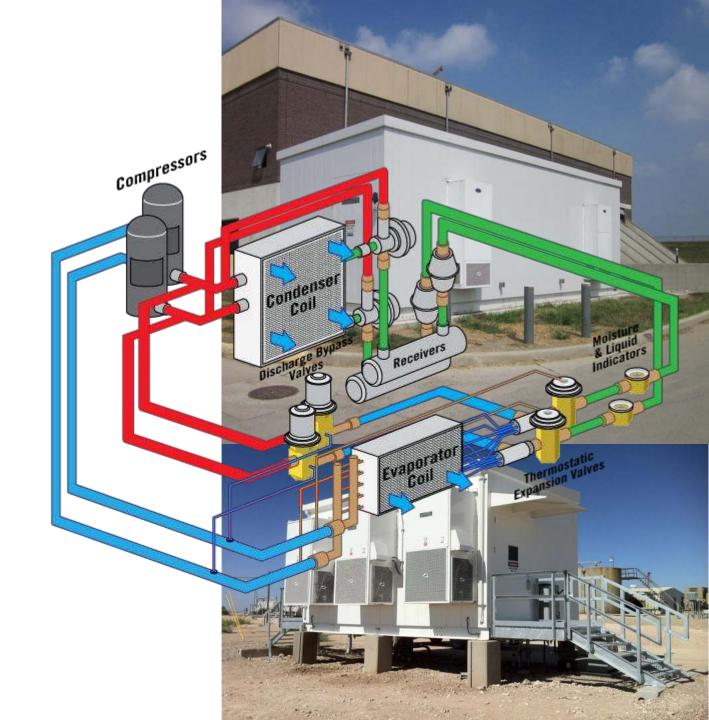
Condenser Air

Available clip-on style cotton seed filters
Available pull out washable hog-hair filters

AIR FILTRATION

Built-In Chemical Filtration
2-inch MERV-8 particulate pre-filter
2 banks of chemical filter media
4-inch MERV-8 particulate final-filter

Chemical Filtration Deep Bed Scrubber 2-inch MERV-8 particulate pre-filter 2 6-inch banks of chemical filter media V-Bank MERV-11 particulate final-filter Includes pressurization blower


TWO TYPES OF REDUNDANCY

External Redundancy

100% redundant systems
N+1

Internal Redundancy

2 or 4 stages of cooling provide inherent partial capacity in the event of a component failure

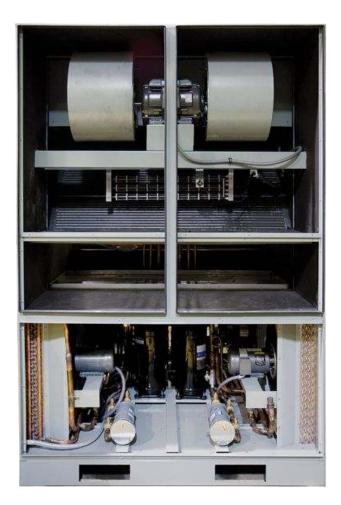
BAS INTEGRATION

Ensure at minimum Form-C Dry contacts available for alarm output

Remote system shutdown Remote system monitoring Remote full system control

EASE OF MAINTENANC E

Ensure access to filters and components that have potential for failure


Through-the-wall mounting reduces need for man-lift for most maintenance and component replacement

Hinged doors throughout

Modular pull-out design of most components

Coil fin spacing of ~ 8 FPI

MINIMIZED FOOTPRINT AND WALL PENETRATION

Through the wall design can reduce opportunity for leaks from poor building seal

Interlaced refrigerant coils drastically reduce space requirements, allowing for the smallest possible cabinet per capacity

Enhances ease of installation and use

EXPLOSION PROOF BY DESIGN

Don't settle for modified

EXPLOSION PROOF BY DE

Class 1 Div 2 TEAO (totally enclosed air over) evaporator motors

Class 1 Div 2 TEFC (Totally enclosed fan cooled) condenser motors

Built-in NFPA 496 compliant fully automated purge & pressurization

Corrosive and Combustible Gas Alarms

Stack Adapter for Standard or Freestanding Fresh Air Intake Stack

UL 508A Panels – Fabricated In-House Units Fully CSA Certified to UL Standards

ALTERNATIVE UNIT CONFIGURATI ONS

MULTIPLE UNIT CONFIGURATI ONS

AVAILABLE SIZES AND CAPACITIES

Explosion Proof and Severe Duty Systems

□ Fully Configurable Single Unit Capacities from 2–50 Tons

Industrial Grade Wall-Mount Systems

OTHER AVAILABLE OPTIONS

Heat

• Combustible, toxic, corrosive gas alarms and detection

- Clogged filter alarms
- Smoke detection and alarms
- High/Low pressure and temperature alarms

- Standard wire element
- Finned tube electric
- Explosion proof electric
- Steam heat

- Other Environmental Controls
- Chilled water evaporator coil
 Humidity control
 Water cooled condenser

• Other refrigerants, including R-407C

Misc

- Blast dampers for evap and condenser
- Full touch screen HMI controls
- Aluminum or galvanized cabinet with custom color matching

OTHER AVAILABLE SERVICES

Heat loads for time savings or comparison Duct design and installation 3D modeling of building airflow Custom controls design

SUMMARY

Recap and takeaways

SUMMARY: KEY TAKEAWAYS

Is the specified HVAC system ready to address the below issues?

- 1. **Corrosion:** Specify a system with corrosion resistant features such as 316 stainless steel, corrosion resistant coatings, and proper coil construction.
- 2. Explosion risk: Specify a system that is certified, designed, built, and tested to meet applicable regulatory and statutory requirements.
- 3. High capacity: Can the unit cool 24/7 with drastically variable and extremely high heat loads?
- 4. **Reliability:** Will the system minimize downtime with built-in redundancy? Is the system easy to maintain?
- 5. Filtration: Specify an all-in-one system that includes the proper filtration for the environment

QUESTIONS?

In the unlikely event we don't know an answer, we'll find out.

WEB PAGE

www.specificsystems.com